17PS1206 - POWER SYSTEM DYNAMICS & STABILITY

Instruction/week: 4 hrs.

Univ. Exam: 3 hrs.

Max. Sessional marks: 40

Univ. Exam marks: 60

<u>UNIT-I</u>

INTRODUCTION: System model, Analysis of steady state stability, Analysis of transient stability.

<u>UNIT-II</u>

MODELING OF SYNCHRONOUS MACHINE: Introduction, synchronous machine, Park's Transformation, Analysis of steady state performance, per unit quantities.

UNIT-III

EXCITATION AND PRIME MOVER CONTROLLERS: Excitation system, Excitation system modeling, Excitation systems- standard block diagram, system representation by state equations.

UNIT-IV

DYNAMICS OF A SYNCHRONOUS GENERATOR CONNECTED TO INFINITE BUS: System model, synchronous machine model, application of model 1.1, calculation of Initial conditions.

UNIT-V

Small signal Analysis with block diagram representation, characteristic equation and application of Routh-Hurwitz criterion, synchronizing and damping torques analysis, small signal model : state equations.

APPLICATION OF POWER SYSTEM STABILIZERS: Introduction, Basic concepts in applying PSS, control signals.

TEXT BOOKS:

- 1. "Power system dynamics, stability and control" by KR Padiyar, BS Publications
- 2. "Power system stability & control" by P. Kundur, Tata Mc-Graw Hill Professional.

REFRENCES:

- "Power system dynamics and stability" by Peter. W. Sauer & M.A. Pai, Stipes Publishing L.L.C 2006
- 2. "Power system stability Vol. I and III" by E.W. Kimbark, John Wiley and sons.